Battaglia, L. P., Bonamartini Corradi, A., Marcotrigiano, G., Menabue, L. \& Pellacani, G. C. (1981). Inorg. Chem. 20, 1075-1080.
Bell, J. D., Freeman, H. C., Wood, A. M., Driver, R. \& Walker, W. R. (1969). J. Chem. Soc. Chem. Commun. pp. 1441-1443.
Earnshow, A. (1968). Introduction to Magnetochemistry. London: Academic Press.
Flook, R. J., Freeman, H. C., Moore, C. J. \& Scudder, M. L. (1973). J. Chem. Soc. Chem. Commun. pp. 753-754.

Franks, W. A. \& van Der Helm, D. (1971). Acta Cryst. B27, 1299-1310.
Freeman, H. C. (1967). Adv. Protein Chem. 22, 257-424.
Freeman, H. C., Robinson, G. \& Schoone, J. C. (1964). Acta Cryst. 17, 719-730.
Gøowiak, T. \& Podgórska, I. (1986). Inorg. Chim. Acta. In the press.
Glowiak, T., Podgórska, I. \& Baranowski, J. (1986). Inorg. Chim. Acta, 115, 1-10.
Glowiak, T. \& Szemik, A. W. (1986). J. Crystallogr. Spectrosc. Res. In the press.

Glowiak, T. \& Wnerk, I. (1985a). J. Crystallogr. Spectrosc. Res. 15, 157-171.
Glowiak, T. \& Wnȩk, I. (1985b). Acta Cryst. C41, 507-510.
International Tables for X-ray Crystallography. (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Kahn, O. (1982). Inorg. Chim. Acta, 62, 3-14.
Kojma, Y., Hirotsu, K. \& Matsumoto, K. (1977). Bull. Chem. Soc. Jpn, 50, 3222-3231.
Lim, M. C., Sinn, E. \& Martin, R. B. (1976). Inorg. Chem. 15, 807-811.
Mauguen, Y., Vilkas, E. \& Amar, C. (1984). Acta Cryst. C40, 82-85.
Rade, H. S. (1973). J. Phys. Chem. 77, 424-426.
Sigel, H. \& Martin, R. B. (1982). Chem. Rev. 82, 385-426.
Syntex (1976). XTL/XTLE Structure Determination System. Syntex Analytical Instruments, Cupertino, California.
Van Der Helm, D. \& Nicholas, H. B. (1970). Acta Cryst. B26, 1858-1866.

Acta Cryst. (1987). C43, 57-59

Dichloro($\boldsymbol{N}, \boldsymbol{N}$-dimethylethylenediamine)platinum(II)

By R. Melanson, C. de la Chevrotière and F. D. Rochon
Département de Chimie, Université du Québec à Montréal, CP 8888, succ. A, Montréal, Canada H3C 3P8

(Received 16 June 1986; accepted 5 August 1986)

Abstract

PtCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right], M_{r}=354 \cdot 15\), monoclinic, $P 2_{1}, a=5.639$ (2),$b=10.661$ (4), $c=7.244$ (3) \AA, $\beta=95.88$ (3) ${ }^{\circ}, V=433.2$ (3) $\AA^{3}, Z=2, D_{x}=2.714$, $D_{m}=2.71(2) \mathrm{g} \mathrm{cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $169.1 \mathrm{~cm}^{-1}, F(000)=324, T=295 \mathrm{~K}, R=0.032$ for 905 unique observed reflections. Pt has square-planar coordination with a slight distortion caused by the bidentate ligand $\left[\mathrm{N}-\mathrm{Pt}-\mathrm{N}\right.$ angle $\left.=84.0(5)^{\circ}\right]$. The bond distances are $\mathrm{Pt}-\mathrm{Cl} 2.303$ (4), $2 \cdot 317$ (4) and $\mathrm{Pt}-\mathrm{N} 2.039(14), \quad 2.067$ (12) \AA. The crystal is stabilized by hydrogen bonds between the $-\mathrm{NH}_{2}$ group and one chloride ligand.

Introduction. Recently, we have started a study on the reactions of platinum(II) compounds with ethylenediamine derivatives. We have synthesized as starting materials the dihalo complexes. In order to characterize well all the compounds involved in these reactions, we have decided to determine the crystal structure of some of these dihalo compounds. Up to now, only the dichloro Pt complex of N, N-dimethylethylenediamine [$\left.\mathrm{PtCl}_{2}\left\{\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NH}_{2}\right\}\right]$ has given suitable crystals for X-ray diffraction. Its structure is reported below.

Experimental. Synthesis. $\left[\mathrm{PtCl}_{2}\left\{\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NH}_{2}\right\}\right]$ was synthesized from the aqueous reaction of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ with N, N-dimethylethylenediamine in a $1: 1$ ratio. The
yellow compound was recrystallized from water at 333 K . Yield 70%. Dec. at $488-503 \mathrm{~K}$. Elemental analysis: calc. $13.56 \% \mathrm{C}$ and $3.41 \% \mathrm{H}$, exp. $13.49 \% \mathrm{C}$ and $3.31 \% \mathrm{H}$.

The crystals used for the structure determination were obtained by slow evaporation of an aqueous solution.

Platelet, dimensions (mm): $0.084 \quad(100-\overline{1} 00) \times$ $0.038(001-00 \overline{1}) \times \sim 0.29(0 \overline{1} 0-110$ and $\overline{1} 10)$; density by flotation in bromoform-dibromomethane mixture; precession photographs showed space group $P 2_{1}$; Syntex $P \overline{1}$ diffractometer, graphite-monochromatized Mo $K \alpha$ radiation; cell parameters from refined angles of 15 centered reflections (2θ range: 10-21); 1056 independent reflections measured up to $2 \theta<55^{\circ}$ by $\theta-2 \theta$ scan technique; range of $h k l: h: 0 \rightarrow 7, k: 0 \rightarrow 13$, $l:-9 \rightarrow 9$; standard reflections 060,200 and 011 , variations $<2.5 \%$; reflections with $I_{\text {net }}<2.5 \sigma(I)$ unobserved, $\sigma(I)$ calculated as in Melanson \& Rochon (1975); absorption correction based on equations of crystal faces, transmission factors from 0.278 to 0.536 ; data corrected for Lorentz and polarization effects; 905 unique observed reflections; atomic scattering factors of Cromer \& Waber (1965) for $\mathrm{Pt}, \mathrm{Cl}, \mathrm{N}, \mathrm{C}$ and of Stewart, Davidson \& Simpson (1965) for H; anomalous-dispersion terms of Pt and Cl from Cromer (1965).
© 1987 International Union of Crystallography

The Patterson map showed the position of Pt ; other atoms (except H) were located by structure-factor and Fourier-map calculations; isotropic secondary-extinction correction (Coppens \& Hamilton, 1970); w

Table 1. Positional parameters $\left(\times 10^{4}\right)$ with their e.s.d.'s and equivalent isotropic temperature factors $\left(\times 10^{4}\right)$

$U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
x	y	z	$U_{\mathrm{eq}}\left(\AA^{2}\right)$	
Pt	$2210 \cdot 0(8)$	3000	$3965 \cdot 7(7)$	279
$\mathrm{Cl}(1)$	$4906(7)$	$3310(5)$	$6535(6)$	506
$\mathrm{Cl}(2)$	$2672(7)$	$5062(4)$	$3058(7)$	420
$\mathrm{~N}(1)$	$1792(20)$	$1161(13)$	$4634(18)$	351
$\mathrm{~N}(2)$	$-220(20)$	$2580(11)$	$1718(16)$	319
$\mathrm{C}(1)$	$650(32)$	$514(18)$	$2990(26)$	501
$\mathrm{C}(2)$	$-1226(26)$	$1334(17)$	$2116(23)$	431
$\mathrm{C}(3)$	$987(27)$	$2606(16)$	$-100(22)$	418
$\mathrm{C}(4)$	$-2264(27)$	$3505(18)$	$1439(24)$	511

Table 2. Bond distances (\AA) and angles $\left(^{\circ}\right)$

$\mathrm{Pt}-\mathrm{Cl}(1)$	$2.303(4)$	$\mathrm{N}(2)-\mathrm{C}(2)$	$1.48(2)$
$\mathrm{Pt}-\mathrm{Cl}(2)$	$2.317(4)$	$\mathrm{N}(2)-\mathrm{C}(3)$	$1.54(2)$
$\mathrm{Pt}-\mathrm{N}(1)$	$2.039(14)$	$\mathrm{N}(2)-\mathrm{C}(4)$	$1.51(2)$
$\mathrm{Pt}-\mathrm{N}(2)$	$2.067(12)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.47(2)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.47(2)$		
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	$90.5(1)$	$\mathrm{Pt}-\mathrm{N}(2)-\mathrm{C}(2)$	$106(1)$
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{N}(1)$	$91.7(4)$	$\mathrm{Pt}-\mathrm{N}(2)-\mathrm{C}(3)$	$111(1)$
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{N}(2)$	$175.7(4)$	$\mathrm{Pt}-\mathrm{N}(2)-\mathrm{C}(4)$	$113(1)$
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{N}(1)$	$177.3(4)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$108(1)$
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{N}(2)$	$93.8(3)$	$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	$110(1)$
$\mathrm{N}(1)-\mathrm{Pt}-\mathrm{N}(2)$	$84.0(5)$	$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(3)$	$113(1)$
$\mathrm{Pt}-\mathrm{N}(1)-\mathrm{C}(1)$	$108(1)$	$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(4)$	$108(1)$

Distances and angles of atoms possibly involved in hydrogen bonds

$\mathrm{N}(1) \cdots \mathrm{Cl}\left(2^{\mathrm{i}}\right)$	$3.37(1) \AA$	$\mathrm{N}(1) \cdots \mathrm{Cl}\left(2^{i i}\right)$	$3 \cdot 58(1) \AA$
$\mathrm{H}(2) \cdots \mathrm{Cl}\left(2^{\prime}\right)$	$2 \cdot 61$	$\mathrm{H}(1) \cdots \mathrm{Cl}\left(2^{i i}\right)$	$2 \cdot 76$
$\mathrm{C}(1)-\mathrm{N}(1) \cdots \mathrm{Cl}(2)$	$87(1)^{\circ}$	$\mathrm{C}(1)-\mathrm{N}(1) \cdots \mathrm{Cl}(2)$	$121(1)^{\circ}$
$\mathrm{N}(1)-\mathrm{H}(2) \cdots \mathrm{Cl}(2)$	150	$\mathrm{~N}(1)-\mathrm{H}(1) \cdots \mathrm{Cl}(2)$	149
Symmetry code: (i) $-x, y-\frac{1}{2}, 1-x$; (ii) $1-x, y-\frac{1}{2}, 1-z$.		

Fig. 1. Labeled diagram of the molecule $\left\{\mathrm{PtCl}_{2}\left\{\mathrm{~N}_{2} \mathrm{CH}_{3}\right)_{2}\right.$. $\left.\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NH}_{2}\right\}$. The ellipsoids correspond to 50% probability.
$=1 / \sigma^{2}(F) ; \mathrm{H}$ atoms fixed at calculated positions $(\mathrm{C}-\mathrm{H}=0.95$ and $\mathrm{N}-\mathrm{H}=0.85 \AA$) with isotropic $B=6.0 \AA^{2}$. Ratio of maximum least-squares shift to e.s.d. in final refinement cycle (on F) $<0 \cdot 13$; $\rho_{\text {max }}$ $=1 \cdot 1 \mathrm{e} \AA^{-3}$ (close to Pt) in final Fourier synthesis. $R=0.032, w R=0.031$; calculations on a Cyber 830 with programs of Melanson \& Rochon (1975).*

Discussion. The refined atomic parameters are listed in Table 1. A labeled diagram of the molecule is shown in Fig. 1. The coordination around the Pt atom is square planar. The deviations from the weighted best plane are $\mathrm{Pt}-0.0001$ (5), $\mathrm{Cl}(1) 0.001$ (4), $\mathrm{Cl}(2) 0.005$ (4), $\mathrm{N}(1)$ $0.054(12)$ and $N(2) 0.009(12) \AA$. The bond lengths and angles are given in Table 2. The angles around the Pt atom are close to the expected values of 90 and 180°, but there are some distortions due to a slight strain caused by the bidentate ligand. The chelate angle $\mathrm{N}(1)-\mathrm{Pt}-\mathrm{N}(2)$ is smaller $\left[84.0(5)^{\circ}\right]$ than the other angles as observed in other Pt -ethylenediamine structures (Faggiani, Lippert \& Lock, 1980; Bau, Gellert, Lehovec \& Louie, 1977). In [PtCl_{2} (en)] (Iball, MacDougall \& Scrimgeour, 1975) the angle $\mathrm{N}-\mathrm{Pt}-\mathrm{N}$ is only $73(2)^{\circ}$, but we do not believe that this value is reliable. The standard deviations must be much higher than estimated by the authors.

The $\mathrm{Pt}-\mathrm{Cl}$ bonds $[2.303$ (4) and 2.317 (4) \AA] are of normal lengths. The IR spectrum of the compound showed two stretching $v(\mathrm{Pt}-\mathrm{Cl})$ vibrations at 320 and $340 \mathrm{~cm}^{-1}$, which are typical of cis isomers.

The two $\mathrm{Pt}-\mathrm{N}$ bond distances $[2.039$ (14) and $2.067(12) \AA]$ are not significantly different even though there are two methyl groups on one of the N atoms. These distances are normal and agree with the values found in other $\mathrm{Pt}-(\mathrm{en})$ compounds (Faggiani et

Fig. 2. Stereoscopic diagram of the packing in the $\left[\mathrm{PtCl}_{2}\left\{\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2^{-}}\right.\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NH}_{2}\right\}$] crystal (b axis vertical and c axis horizontal).
al., 1980; Bau et al., 1977; Iball et al., 1975). The bond distances and angles within the N, N-dimethylethylenediamine ligand are normal (Table 2). The torsion angles have been calculated and deposited.

In the structure of $\left[\mathrm{PtCl}_{2}(\mathrm{en})\right]$ the $\mathrm{Pt}(\mathrm{en})$ chelate rings are puckered and the distance between adjacent Pt atoms is $3.38 \AA$ (Iball et al., 1975). In the present structure, the Pt atoms cannot be so close because of the presence of two methyl groups, one on each side of the Pt coordination plane. The shortest distance is $5.639 \AA$. The packing of the molecules in the crystal is shown in Fig. 2. It consists of layers of molecules parallel to the ac plane and centered at $y=0.3$ and 0.8 . The crystal is probably stabilized by intermolecular hydrogen bonding between the $-\mathrm{NH}_{2}$ group and $\mathrm{Cl}(2)$. The $\mathrm{N}(1) \cdots \mathrm{Cl}(2)$ distances are 3.37 (1) and 3.58 (1) \AA and the angles are acceptable (Table 2).

Grateful acknowledgments are made to the National Sciences and Engineering Research Council of Canada and to the Ministère de l'Education (FCAR) for financial support.

References

Bau, R., Gellert, R. W., Lehovec, S. M. \& Louie, S. (1977). J. Clin. Hematol. Oncol. 7, 51-62.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Faggiani, R., Lippert, B. \& Lock, C. J. L. (1980). Inorg. Chem. 19, 295-300.
Iball, J., MacDougall, M. \& Scrimgeour, S. N. (1975). Acta Cryst. B31, 1672-1674.
Melanson, R. \& Rochon, F. D. (1975). Can. J. Chem. 53, 2371-2374.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1987). C43, 59-61

Structure of the Phosphorin Derivative $\left[\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\left\{\left(\mathrm{CH}_{3}\right) \mathrm{PC}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}\right]$

By Bernhard Nuber and Manfred L. Ziegler*
Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg, Federal Republic of Germany

(Received 16 May 1986; accepted 12 August 1986)

Abstract

Dicarbonyl(η-cyclopentadienyl)(1 -methyl-2,4,6-triphenylphosphorin)iron, $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{FeO}_{2} \mathrm{P}, \quad M_{r}=$ 516.36, monoclinic, $P 2_{1} / a, \quad a=9.482(3), \quad b=$ 14.051 (4), $\quad c=18.941$ (4) $\AA, \quad \beta=94.80$ (2) ${ }^{\circ}, \quad V=$ $2514.7 \AA^{3}, Z=4, D_{x}=1.364, D_{m}$ (by flotation) $=$ $1.39 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \mu=6.35 \mathrm{~mm}^{-1}$, $F(000)=1072, T=298 \mathrm{~K}$. Final $w R=0.050 \quad(R=$ 0.071) for 994 observed independent reflections. The structure consists of discrete molecules; the phosphorin ligand is bound to the iron via the P atom. The five C atoms of the phosphorin ring do not deviate noticeably from planarity; the $\mathrm{C}-\mathrm{C}$ distances are equal within 1σ [mean $1.40(2) \AA$]. The 'chair angle' between the carbon plane $\mathrm{C}(1)-\mathrm{C}(5)$ and the plane $\mathrm{C}(1), \mathrm{P}, \mathrm{C}(5)$ is 23.2°. There exists an obvious relationship with the 'open ferrocenes'.

Introduction. The complex chemistry of phosphorin ligands has only recently been studied in detail (Dave, Berger, Bilger, Kaletsch, Pebler, Knecht \& Dimroth, 1985; Lehmkuhl, Elsässer, Benn, Gabor, Rufinska,

[^0]0108-2701/87/010059-03\$01.50

Goddard \& Krüger, 1985). Interest in this chemistry stems from the close relationship with the ferrocenes (I) and the so-called 'open ferrocenes' (II) with an open five-membered pentadienyl ligand (Ernst, 1985). Phosphorin ligands can coordinate in several ways, as shown in the scheme. The phosphorin sandwich (III) has a gauche-eclipsed conformation with both ligands η^{5} bonded (Baum \& Massa, 1985) and the same type of bonding was found in chloro(diethyl ether)(1-iso-propyl-2,4,6-triphenylphosphorin)magnesium, $\quad[\mathrm{MgCl}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHPC}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left\{\mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right\}\right]_{2}$, (K rüger, 1985, unpublished). The η^{3}-allyl-type bonding in (V) has been deduced from NMR experiments (Lehmkuhl, Elsässer, Benn, Gabor, Rufinska, Goddard \& Krüger, 1985) and an X-ray structure determination established bonding of the P atom to the central Ni atom in (IV) (Lehmkuhl, Elsässer, Benn, Gabor, Rufinska, Goddard \& Krüger, 1985). To elucidate more of the complex chemistry of phosphorin ligands a single X-ray structure determination has been performed of the title compound (VI). (VI) can be synthesized by reacting $\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{I}$ with (1-methyl-2,4,6-triphenylphosphorin)lithium(Dave, Berger, Bilger, Kaletsch, Pebler, Knecht \& Dimroth, 1985).
© 1987 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

